Habitability Measurement Research & Development Needs

Jennifer Linda Blume, Ph. D.

Habitability & Human Factors Office

NASA Johnson Space Center, NSBRI

NASA Space Human Factors Engineering Workshop on Opportunities in Space Human Factors Research and Development

> Johnson Space Center, Houston, TX December 11-12, 2002

Significance of Habitability

*** Not merely about Comfort ***

Habitability operates on human performance & behavior

- > Social behavior
- > Fatigue & stress
- Cognition
- > Efficiency

For a human tended mission, maintaining good habitability is a means of *mission risk mitigation*

Some Habitability Stressors on ISS

Habitability stressors can effect crew fatigue, moral, and interaction. The following issues current characterize ISS habitability

- ✓ In adequate volume for and means of stowage
- ✓ No dedicated and private hygiene facility
- ✓ High levels of constant and intermediate noise
- ✓ Crowded conditions, especially in the living quarters
- ✓ Low area lighting and poor portable lighting
- ✓ No privacy door for crew quarters in the Russian module
- ✓ Limited accessibility to hardware for maintenance

Habitability defined

Quality of environment-machine-mission system that best enables human performance

- **Architecture** lighting; colors; relative location of activity centers;
- Habitation activities/hardware
 dining galley, wardroom, packaging;
 sleeping crew quarters, provisions;
 hygiene -compartment, supplies;
 exercise location
- Crew interfaces labels, displays, controls, tools, restraints
- **Operations** (schedule; training; inventory management)

The Habitability Difference

There is consensus on gross relative differences in habitability

But not on <u>finer distinctions</u>

•

?

NASA evaluates vehicles & mission prior to flight and makes trade-offs "Crew have what they need in hardware & environment to perform mission?"

E.g., Muffle noise but decrease available volume

NASA needs a means to compare ultimate outcome of various individual decisions on habitability

→ Standard means to describe habitability

Notable Previous Work Defining Habitability

Frazier (1968), Stuster (1986, 1996)

Lists of aspects or factors of habitability, recommendations for good habitability, intangibles of habitability

Lozar (1978)

Proposed database of correlations between actual building measurements (area, quantity of doors, distance to door) and inhabitants perception of habitability

Celentano, Amorelli, Freeman (1963)

Habitability Index derived from weighted rating of multiple factors

American Bureau of Shipping (2001, 2002)

Actual measurements combined with expert judgments of less quantifiable factors, additive model results in single rating of "fail", "pass", or "pass with honors"

What is NASA-JSC doing now?

Human factors requirement verification

Preflight review of documentation, pass fail judgment except in the case of a noncompliance

Environment measurements

Measurements for air, water, acoustics are acquired to monitor environment

Debriefs

Post-flight interview with the crew on Habitability and Human Factors issues

In-flight reporting

In-flight reporting of Human Factors issues

Habitability Index Development

Habitability Index – The Concept

Example Design Features and Measurable Characteristics

- Sleeping quarters (Sleeping)
 - Size, sound proofing, lighting
- Rack translation (Moving)
 - Size, mass, handle size and location, fragility
- Exercise equipment (Exercising)
 - Size, restraint adjustability, effort adjustment
- Robot arm control (Controlling)
 - Display precision, control sensitivity
- Labels (Reading)
 - Font size, code consistency, durability

Habitability Index Development

Architecture Identify Habitability Factors DONE **Environment** Dining For objective factors, identify values Hygiene DONE correlated to human performance Sleep Recreation 3. For subjective factors, develop Privacy INITIATED criteria for acceptability developed Exercise Communication **Mobility** Standardize values for all factors 4. INITIATED Housekeeping Medical support Weight factors To be started

6. Generate Habitability index

Hab Index - Common Format

- In addition to the common currency concept, it is also useful to have a common format for communicating individual and sets of requirements (indices)
- This common format or user interface should facilitate the efficiency with which human factors requirements are communicated.

Heat	<70	70-75	75-80	80-85	85-90	90-95	>95
Light	>50	40-50	30-40	20-30	10-20	5-10	<5
Noise	<40	40-55	55-60	60-65	65-70	70-80	>80
	Accep	otable	U	Incertai	in U	Jnacce	ptable

AB	Hab						An	Ac	ctivit	ty I	3as	ed I	ndex	(O	f Ha	bita	ability										
Name			Date							Plac	е			Co	ntext					Refe	renc	e					Low
Activity	Descripti	on Ge	neral A	Activities	s - Con	cept	Demo	onstr	ation													lmp	orta	nce			
Related	/ Depend	ent.	Acti	vities	3		Slee	ping,	, Exer	cisir	ng, Wo	orking,	Movin	g, S	howeri	ng, S	ightseeir	ng. E\	/Aing	g, Ea	ting,	We	ight	ing		0	0
Spatial	factors						Н	eigl	ht						Widt	h					L	eng	th				
	Rating						1					1								1						1	1
	Anchor					70				30			70				30			70				30			
Environmental factors						H	lea	it					Ligh		t					1	Vois	е					
	Rating										1				1										1	0	0
	Anchor					70				99			50				5			50				90			
Equipm	ent factor	rs					Controls						Displ		Displa	ays					Inst	structions					
	Rating						1						1												1	0	1
	Anchor					Goo	d		E	Bad			Goo	d			Bad		5	Shor	t			Long	9		
Communication factors				Ava	ilab	oility						Clari	ty				Ac	ces	s to	Exp	erts						
	Rating				1							1							1							3	0
	Anchor					24				<1			Goo	d			Bad			24				<1			
Other fa	actors																										
	Rating																									0	0
	Anchor																										
																							_	Cou		4	2
					_													-			١.٨	Weig				2.0	
																		Im	npo		Veighted Sum				4 28	28	

Important considerations

- 1. Perception of Habitability → Correlate Inhabitants perception with other measures
- 2. Link to Performance → Enable predictions for mission risk
- 3. Qualitative factors → Need valid means of judging less quantitative factors
- **4. Availability of measurements** → Need a tool that can accommodate lack of actual measurements for quantitative factors

5. Other variables

- Time
- Adaptation
- Human characteristics

6. Model vs Index

7. Can Habitability be described with a single number? Is Habitability a **gestalt**?

Conclusions

NASA needs a standard means to describe Habitability

- Enable more informed decisions
 & tradeoffs
- Design better habitats and missions
- Reduce risk
- Increase output of mission

Habitability Index is but <u>one</u> means of addressing this need

Other means of addressing this need are worthy of research and development pursuit

Some References

- American Bureau of Shipping, Guide for Crew Habitability on Offshore Installations. May 2002.
- American Bureau of Shipping, Guide for Crew Habitability on Ships. December 2001.
- Brauer#1, R. L. and T.A. Davis, Development of an Objective Definition of Habitability and a Habitability Data Base, Special Report D-79 (U.S. Army Construction Engineering Research Laboratory [CERL] June 1977).
- Celentano, J. T., Amorelli, D., and Freeman, G. G. (1963). Establishing a Habitability Index for Space Stations and Planatary Bases. Proceedings of the AIAA/ASMA Manned Space Lab Conference, 63:139.
- Fraser, T. M. (1968). The intangibles of habitability during long duration space missions (NASA CR 1084). Albuquerque, NM: Lovelace Foundation.
- Jones, W. L. (1973). Habitability in Long Duration Space Missions. Environmental Biology and Medicine, Vol 2.
- Lozar, C.C., Establishing Habitability Factors for the Design of Office Environments, (U.S. Army Construction Engineering Research Laboratory [CERL] June 1978).
- Novak 2, J.B. (2000) Human Engineering and Habitability: The Critical Challenges for the International Space Station. <u>Aviation</u>, <u>Space and Environmental Medicine</u>. V.71(9), Section II, p.A117-A121.
- Novak 3 J.B. (2000) Summary of Current Issues regarding Space Flight Habitability. <u>Aviation, Space and Environmental Medicine</u>. V.71(9), Section II, p.A131-A132..
- Peacock, B., Blume, J., and Vallance, S (2002). An Index of Habitability (#2002-01-2501). 32nd International Conference on Environmental Systems Proceedings.
- Stuster, J. (1996). Bold endeavors: Lessons from polar and space exploration. Annapolis, MD: Naval Institute Press.
- Stuster, J. W. (1986). Space Station Habitability Recommendations Based on a Systematic Comparative Analysis of Analogous Conditions. NASA Contractor Report 3943.
- Whitmore, M., McQuilkin, M. L., & Woolford, B. J. (1998). Habitability and performance issues for long duration space flights. Human Performance in Extreme Environments, 3 (1), 64-74.
- Wise, J., Geisendorfer, C., Teidje, B., Lantrip, D., Johnson, B., and Geisendorfer, G. (1988). The Quantitative Modeling of Human Spatial Habitability. NASA Contractor Report 177501.